
Practical Programmer

Prototyping for
Tiny Fingers

C.

a

2

"

p

Consider this familiar situation: a
den·lopment team spends weeks de
s1g11i11g an interface. They ch·aw
sketches on the board, discuss each
point in detail, and finally specify a
design. The rksign is either coded
into the appliration language or
simulatnl with a sohware
prototyping tool. Tht, 1·es1dt is
linally shown to IIS<TS for appnlval.
in a session that

genen1tes scrffes of comments on suh
jecr.s ranging from the basic meta
phor to the choice of background
coloL The team just barely has time
to incorporate these comments into a
revised design before committing

by Marc Rettig

their work to prnduction.
Now consider a different situation,

one I have witnessed first-hand over
the past few months: a development
team spends weeks designing an in
terface. During the first few days,
they construct a paper prototype of
their initial thinking about all aspects
of the design, and test it with typical
representatives of the user commu-

COMMUIIICJITIOlla- JICM April 1994/Vol_37, No.4 21

nity. One of them “plays computer,”
moving components of the paper in-
terface around on the table in re-
sponse to the users’ actions. The oth-

ers observe and take notes. After the
tests they take a week to distill lessons
from their observations, redesign the
interface, and retest with several new
users. This process continues until, at
the end of the time allotted for inter-
face design, the team has revised
their design four times and tested it
with many typical users.

This technique-building proto-

types on paper and testing them with
real users-is called low-fidelity pro-
totyping or “lo-t7 for short. The
value of promtyping is widely recog-
nized, but as thr first situation exenl-
plilies, that value is not always gained
in practice. If that has brrn your ex-
perience, you might want t” try lo-C
promtyping, which requires little
more in the way of implementation
skills than the ones you learned in
kindergarten.

The idea oflo-fi prototyping (a.k.a.
“paper prototypes”) has been around
a long time. So long, in fact, that
nmre than one person in the CHI
community expressed surprise when
I said I was planning to write a col-
umn on the subject. But I see this as a
wonderfully simple and effective tool

that has somehow failed to come int”
general use in the software commu-
nity. I say this based on the success of
the teams I’ve watched over the past
several months together with the fact
that this is the first commercial proj-
ect where I’ve seen paper prototypes
employed.

Paper prototyping is potentially a
breakthrough idea for organizations
that have never tried it, since it allows
you to demonstrate the behavior of

an interface very early in develop-
ment, and test designs with real users.
If quality is partially a function of the
number of iterations and reftnements
a design undergoes before it hits the
street, lo-fi prototyping is a technique
,that can dramatically increase quality.
It is fast, it brings results early in de-
velopment (when it is relatively cheap

to make changes), and allows a team
to try far more ideas than they could
with high-fidelity prototypes. Lo-fi
prototyping helps you apply Fudd’s
first law of creativity: “To get a good
idra, grt lots of ideas.”

The Problems with Hi-Fi
For years developers have used ev-
erything from demo-builders to mul-

timedia tools to high-level languages
to build prototypes. Lo-fi proponents
call these “hi-h prototypes.” They
have their place: selling an idea, test-
ing look-and-feel, detailed proof-of-
concept, testing changes to an exist-
ing system, and so forth. I’m not sug-
gesting we should stop building
them. But they also have problems.

l Heji ~ro@#~e.i take too long to budd
andchange. Even with high-level tools,
a fully functional prototype can take
weeks to create. I have seen teams
build a complete working lo-Ii proto-
type in four hours. The goal is to get
through as many iterations as you can
during the design phase, because
each iteration means improvement. If

testing flushes out problems with the
basic metaphor or control structure
in a design, changing the prototype
can again take weeks. This is what
Debbie Hix and Rex Hartson, re-
searchers and faculty members at
Virginia Tech, call the “Software de-
veloper’s dilemma.” You can’t evalu-
ate an interaction design until after it
is built, but after building, changes t”
the design are difficult.

Paper prototypes, on the other
hand, are extremely fast to develop
and the technique is very easy to
learn. It is the fastest of the so-called

rapid prototyping techniques. To
make a broad generalization, inter-
face designers spend 95% of their
time thinking about the design and
anly 5% thinking about the mechan-
ics of thr t”“l. Software-based tools,
no matter how well executed, rcversc
this ratio.
l Reuiewm and L&en lend lo commcnl
on “f;l nndfin~~h”rsua You are trying
m get feedback on the big things: the
flow of the conversation, the general

layout of the controls, the terminol-
ogy, the expressiveness and power of
the basic metaphor. With a slick soft-
ware prototype, you are just as likely
t” hear criticisms about your choice of
fonts, color combinations, and button
sires. On the back side of the same
coin, developers easily become ob-
sessed with the prettiness-power of a
good tool, and spend their hours

choosing colors instead of coming up
with new ideas.

In contrast, the hand-made ap-
pearance of a paper or acetate proto-
type forces users to think about con-
tent rather than appearance.
l Developers resist changes. They are
attached t” their work because it was
so hard to implement. Spend enough
time crafting something and you are
likely to fall in love with it. Knowing

this, team members may feel reluc-
tant t” suggest that their colleague
should make drastic changes to the
lovely looking, weeks-in-the-making
software prototype. They would bc
less hesitant to suggest redrawing a
sketch that took an hour to create.
. A @,tot@e in software can .sel e$mLa-
lions thrill wzll be hard to change. Proto-
typing tools let you do wonderful
things in a (relatively) short time. You
can make something that looks like a
finished product, fooling testers and
even management into thinking how
far you are along. If it tests well, you
may wind up spending time on “re-
verse damage control,” handling
questions about your sudden lack of

progress.
l A single bug in a hi-/i protolype fun
bring a lest lo n comfilele halt. To test
effectively, your prototype needs to be
complete and robust enough for some-
one TV try to do something useful
with it. Even with the coolest of high-
level tools, building a prototype is still
essentially a programming exercise-
and we all know how hard it can he t”
get all the bugs out of a program. On
the other hand, 1 often see teams cor-

recting “hugs” in a paper prototype
while the test is in progress.

A Trojan Meme
The spread of lo-6 design through
my current project started with a visit
from Jared Spool (with User Inter-
face Engineering in Andover, Mass.).
He and his associate presented the
basic ideas, then put us to work in
four trams to design and build a pro-
totype of an automated menu for a

fast food restaurant. For three hours
we discussed, designed, sketched and
glued, then ran the results in a face-
off competition with “real users” and
a “real task.” That is, we brought
people in from elsewhere in the
building and told them, “you have
$4.92. Order as much food as you
can.” The designs were measured by

how quickly and efficiently people

Lo-fi prototyping works because it effectively educates
developers to have a concern for usability and formative evalu-
ation, and because it maximizes the number of times you get to

refine your design before you must commit to code.

could use the interfaces without
coaching from the designers. Be-
tween tests, each team had a few min-
utes to refine their interface.

We were all impressed with the re-
suits of the exercise. In about six
hours we had learned the technique,
designed an interface and built a
model of it, conducted tests, and
measurably improved the original
design. That was four months ago,
and now we have scores of people
working on lo-ti designs, refining
them through repeated tests with ac-
tual “sers. Interface sketches are
lying all over the place, scans are put
on the network for peer review, and
terms like “affordance” and “mental
model” are common parlance.

I call this a “Trojan meme” instead
ofjust a “selfish mcme” because it did
more than reproduce itself through
the department. (A meme is an idea-
the mental equivalent of a gene, and
selfish ones try to replicate them-
selves in as many minds as possible.)
As it spread, it served as a vehicle for
spreading a general appreciation of
the value of usability design: develop-
ers saw first-hand the difference in
people’s reactions to successive re-
finements in their designs. Within
days of designing an interface, they
saw exactly how their work was per-
ceived by people just like those who
will eventually be using their prod-
uct. The value of two important laws
of interaction design was memorably
demonstrated: “Know Your User,”
and “You Aren’t Your User.”

Testing for iterative refinement is
known in the interface design com-
munity as “formative evaluation,”
meaning you are evaluating your de-
sign while it is still in its formative
stages. Testing is used as a kind of
natural selection for ideas, helping
your design evolve toward a form
that will survive in the wilds of the
user community. This is in contrast to
“summary evaluation,” which is done

once after the product is complete.
With summary evaluation you find
out how well you did, but you find
out too late to make substantial
changes.

Lo-ii prototyping works because it
effectivelv educates dewlowers to
have a Concern for usability and
formative evaluation, and because it
maximizes the number of times you
get to refine your design before you
must commit to code. To make the
most of these advantages, the proto-
typing effort needs to be carefully
planned and followed by adequate
testing and evaluation. (It also helps
to have someone who can enthusias-
tically champion the idea.) Hix and
Hartson have an excellent chapter on
formative evaluation in their book,
Develofing User Interfam If you plan
to adopt any of these techniques, I
recommend you read their book.

The rest of this is drawn from our
experience over dozens of designs
and scores of tests, notes from Jared
Spool’s workshop, and Hix and
Hartson’s book.

Building a Lo-F1 Prototype
I. Assemble a kit. In this decadent
age of too many computers and too
few paint brushes, it might be hard to
get all the materials you need by rum-
maging through the supply closet in
the copy room. Make a trip to the of-
fice supply store, or better yet, the art
supply store, and buy enough school
supplies to excite the creative im-
pulses of your team. Here’s a shop-
ping list:

l White, unlined, heavy paper that is
bigger than letter size (11 by I7
inches is nice), and heavy enough to
endure the rigors of repeated testing
and revision.
l Hundreds of 5-by-&inch cards.
These come in handy as construction
material, and later you’ll use them by
the score for note taking during tests.

l Various adhesives. Tape: clear, col-
ored, double-backed, pin stripin
tape, whatever. Glue sticks, and most
importantly, Post-It glue-a stick of
the kind of glue that’s on the back of
those sticky yellow notes. Rolls of
white correction tape arc great for
button labels and hurriedly written
field contents.
l Various markers-colored pens
and pencils, highlighters, tine and
thick markers, pastels.
l Lots of sticky note pads of various
sires and colors.
l Acetate sheets--the kind you USC IO
make overhead presentations. Hix
and Hartson swear by these as the
primary construction material for
lo-ii interfaces.
l See what you find in the architrc-
ture section. They have sheets of rub-
on texture, for example, which could
give you an instant shading pattern.
l Scissors, X-act” knives, straight-
edges, Band-Aids.

Just like kindergartners, lo-6 dr-
signers sometimes find inspiration in
the materials at hand. So go ahead-
buy that package of colored construct
tion paper. The worst that can hap-
pen is you won’t USC it. Eventually
your tram will develop their own con-
struction methods, and settle on a
list of essentials for their lo-ii
construction kit.
2. Set a deadline. There is a terrific
temptation to think long and hard
about each aspect of the interface be-
fore you commit anything to paper.
How should you arrange the menus?
What should be in a dialog box, what
should be in menus, and what should
be in a tool palette? When you are
faced with a blank sheet of paper,
these kinds of decisions crowd your
thoughts all at once. “Wait,” you
think, ?ve haven’t thought about this
enough!”

That’s exactly the point: no matter
how hard you think about it, you

Ciawe I. Afewcomponents
Of a paper prototvpe. The
main window is in the mid-
dle, showing a few Pieces of data
added with strips Of Correction
tape. and controls stuck on with
Post-It paper. The window is sur-
rounded by POP-UP menus, dia-
log boxes, and sundry interface
widgets.

gets, producing large amo”“ts of
data, or rendering artistic and attrac-
tive designs. Exploit these talenu and
divide the labor accordingly.

Construct a first version com-
pletely by hand. Sketch the widgets,
hand-letter the labels. Don’t eve”
worry about “sing a straightedge at
first. Just get the ideas down on
paper. Test small details on one an-
other, or drag people in from the hall
for quick tests of alternative solutions.

Of course, hand-draw” sketches,
no matter bow carefully done, may
not be appropriate for some testing
situations. For example, a customer
may be willing to let you test your
design with actual users. They may
understand the transience of the pro-
totype, but you still want to make a
good impression. You want to look
sharp.

Some of the teams on my project
have made remarkably attractive
paper interfaces using components
created with drawing software, then
printed on a laser printer. Some of
them build up a familiar look with
elements taken from screen captures.
To facilitate this kind of thing, they
set up a library of lo-ti widget images:
blank buttons of all sizes, window and
dialog frames, scroll bars, entry tields,
and so on. People print these out, re-
size them on the photocopier, and
make them part of their standard lo-t7
kit. Or they resize them on the com-
puter, add labels, and print o”t a cm-
tom part for their work in progress.

This is a” example of the kind of

preparation that will help lo-ii proto-
typing become a normal part of your
design process. Preparing a widget
library, writing down guidelines, and
taking time to train people will make
everyone more enthusiastic and
productive.

Preparing for a Test
However much care you take in
building your prototype, the tests will
be ineffective unless you prepare well
for them. Be sure to attend to the fol-
lowing matters.

1. Select your trsers. Before you start
designing, you should do enough
user and task analysis to understand
the people who will he using your
software--their educational and
training background, knowledge of
computers, their familiarity with the
domain, typical tasks involved in
their job, and so on. Based on this
study, you can look for pools of po-
tential testers for your prototype.
With a good user profile on band,
you can develop a questionnaire that
will help to choose the best represen-
tative users from available candidates.

If would seem reasonable to ar-
range it so the people testing your
prototype are the same people who
will be using the final product. But
bona fide members of the user com-
munity may be hard to corral for the
time it takes to run a test, and using
them may not be the best idea in the
long run. Be sensitive to the political
climate. People may feel threatened

by the intrusion of a new system into
their work (perhaps justifiably!), or
there may be a competitive situation
that makes your employer reluctant
to expose “ew ideas outside the walls
of your building.

Since you are looking for appro-
priate knowledge and skills, not job
titles, you can often get by with “sur-
rogate users”-people who fit the
same profile as your actual clients,
but free from whatever association
that prevents you from testing with
the clients themselves. I’ve heard of
all kinds of tricks for attracting peo-
ple to the test. Spool says he’s done
everything from running ads in the
newspaper to recruiting university
students to contacting local user
groups. Anything to avoid using ac-
tual customers, employees, or friends
and family. (The latter may be acces-
sible, but there are a lot of things
about sharing ties in the same social
web that can conspire to damage a
usability test. For example, testers
who know you or the project may
skew the results by trying hard to
please you or do what they think you
expect them to do.)

Finally, remember that no two
people are the same, and your prod-
uct’s users may be a diverse group.
Try to recruit testers that represent
the whole range of characteristics in
your target audience. Our practice
has been to conduct at least one

elgure2. A lo-fl testing session

. . .e _.. bb

mund of resting in our off& with
surrogates, then go t” the field fog
testing with the m”st typical end
users we can find.
2. Prepare test scenarios. Write a set
of scenarios, preferably drawn fl-om
task analysis, describing the product
during use in a typical work situati”n.
Design your prototype to support a
few of these scenarios, narrowing the
scope of your &orts f” a reasonably
small set of functions, but broad
enough t” allow meaningful tests.

If possible, ask someone t” review
the scenarios and sample data and
tell you whether they look realistic. In
our experience, people find a lo-fi
interface more engaging-more real-
istic-if it shows data that looks famil-
iar and we ask them t” perform real-
istic tasks. This helps draw them into
the “let’s pretend you’re really using
a cnmputer at your job” world, which
leads to better tests. On the other
hand, unrealistic scenari”s and data
can severely damage the credibility of
your design.
3. Practice. Just as a bug in a soft-
ware prototype can ruin a test se,-
sion, so can a bug in a lo-fi prototype.
That bug could be a missing compw
“em, a misunderstanding “n the pan
“f the person playing “computer,” “I
even excessive hesitation and c”nf&
Sian because the team is unfamiliar-
with how to conduct a tat. So to
avoid embarrassment, conduct xv-
eral dry runs belore you test with
people from outside your team. Each
team member should be comfortable
with his or her role, and you need I”
make SUE you have the supplies and
equipment needed TV gather gaod
information.

Conducting a Test
We find it takes four pcoplc t” get tbr
mat “ut of a test session (see Figure
2). and that their activities fall int”
four essential roles:

l Greeler. Much the same as the usher
in a church, thr greeter welc”mes
users and tries t” put them at ease.
We have some forms we ask people t”
lill out-an experience profile, for
example--a job the greeter handles
while other team members are setting
up for the test.
l Facililnlor. Once the test is set up,
the facilitator takes the lead, and is

Practical Progmmmer
_L. ~__ -w.. ..-.

the only team member who is allowed
to speak freely during the test. Facili-
tating means three things: giving the
user instructions, encouraging the
user t” express his or her thoughts
during the test, and making sure ev-
crything gets donr on time. This is a
difficult enough job that the facili-
tat”r should not be expected t” take
notes during a session.
l Compulw. One tram member acts as
the “computer.” He or she knows the
application I”gic thowughly, and sus-
tains the illusion that the paper pi”-
totype behaves similar to a real com-
puter (with an unusually slow
response time). A pointing fingel-
serves as a cursor, and expressions
like, “I ‘YP’ ‘half-silvered
bicuspidon in that field” substitute
for keyboard entry. If the use,.
touches a control, the computer in-
ranges the prototype t” simulate the
response, taking care not t” explain
anything other than the bebavi”~- of
the interface.
l Obsuwrs. The rest of the tram
members quietly take notes “n s-by-
X-inch index cards, writing one ob-
servation prr card. If they think “1 a
recommended solwi”n, they write it
on the same card that record, the
problem.

Since all of these r”les can be ex-
hausting, we rotate them among the
tram when we amduct more than
OFF session a day (and we very “lien
schedule low sessions in a day).

Typical tat sessions usually last a
little wee- an haul-, and go through
three phases: getting ready, conduct-
ing the test, and debriefing. We begin
with greetings, introductiwr. ire-
frrshmrnts and general ire-bl-eaking,
trying our very best to assuw people
that the test is confidenti the results
will remain anonymous, and their
supervisor won’t hear a w”rd about
whether or not they “got it.” people
often say things like, “Am I flunking
the test? Am I getting it right?” To
which we anwet-, “Don’t worry, the
qurstion is whether or not we are
flunking. The interface is on trial, not
you. If you fail t” understand some-
thing or can’t complete one of the
tasks, that’s a sign of trouble with the
design, not a lack of intelligence on
your part.”

While this is going “n, someone
positkms a video camera (we tape all

the sessions) so it points down over
the user’s shoulder t” lo”k at the in-
terface and the hands moving over it.
No ““e’s face ever appears on tape.

During the test, the Facilitator
hands written tasks t” the user one at
a time. These must be very clear and
detailed. As the person works on each
task, the facilitator tries t” elicit the
user’s thr,ughts without influencing
his or her choicer. “What are you
thinking right now?” “What quca-
ti”ns are “n your mind?” “Are you
confused about what you’re seeing?”

While this is going on, the rest of
the tram members “bsrrve and take
notes, and may occasionally interject
a question. But they must never
laugh, gape, say “a-ha.” nudge one
another, “r “then-wise display their
reaction to what’s happening to their
careful design. This kind of thing can
intimidate or humiliate users. ruining
the arlationship and spoiling the test.
It can be terribly difficult to keep still
while the user spends IO minutea
using all the wrong conools for all the
wnmg reasons. You will feel a com-
pelling urge to explain the de+ t”
your users. Don’t give in.

When the hour is over, we spend a
IO-minute debriefing session asking
questions, gathering imp,-essions,
and expressing our thanks.

Evaluating ReSultS
I.“-fi “1 hi-Ii, prrnotyping is worthleas
unless information is gathered and
the product is relined based on you)
findings. As I wr”te earlier, Hix and
Harts”” nicety cover the details of
gathering and analyzing trst data. We
spend quite a bit of time (at least a
day per iteration) sorting and priori-
tizing the n”tr cards we wr”tr during
the test sessions. Ow methr,d in-
volves arranging the paper prototype
“n a big table. then piling the n”tc
cards next t” its relevant interface
component. Then team members
divide the labor ofgoing through the
piles t” summarize and prioritize rhc
problems.

These sorted piles inform a written
report on findings from the test, and
form the agrnda of a merting t” dis-
cuss recommended changes f” the
design. The team warks through the
piles and agrees “n suggested
changes, which are written on Post-It
n”tes and affixed directly to the rele-

,... L _. ,.. LL _.b. >

van, part of the paper prototype.
Constructing the revised prototype
becomes a procrss of taking each
component, and following the recom-
mendations that were stuck to it.

Hix, who for years has been teaching
courses and workshops in interface
design, says that people consistently
enter the tint lo-f, exercise with skep-
ticism. After trying it they invariably
say something to the extent of, “I
can’t believe how much we learned
from this!” If this column is the first
place you have heard about the lo4
technique, one danger is that you will
set aside this magazine with just
enough skepticism that, however
much interest I’ve managed to create,
you will fail to actually try it.

Having seen other skeptics con-
verted, I’m confident in recommend-
ing this technique. If you already
have a working high-fidelity proto-
type, it probably isn’t worth abandon-
ing that course to switch to lo-L But if
you are in the very early stages of de-
sign and exploring broad questions,
or if you need to learn more now,
lo-fi prototyping is just the tool to
pick up. 0

Ku&l, J. and knee. s. Twn,y-two ups
for a happier, healthirr prototype. lnlerar.

I, I “a”. ,994). 35-4”.

